
Spring 2021 ROAR S1 Series First Place Solu8on

Team: Winning ROAR!!

By James Cheney

Team members: James Cheney, Chufan Guo

With assistance from Michael Wu and Flaviano Chris8an Reyes

Introduc8on

The evolu8on of the winning Roll ContRoll agent for entry into the Spring 2021 ROAR series S1

race began with a curiosity - what if I added a roll input to a PID autonomous vehicle controller

as a means of gauging maximum speed in a turn? To sa8sfy my curiosity, I replaced the en8rety

of the longitudinal control (throQle control) of the PID agent with a simple algorithm: throQle

output = exp (-0.07 * |roll|). This output gives a result of one (maximum throQle) for zero roll

and exponen8ally reduces toward zero (no throQle) as body roll increases (The .07 number was

arrived at via a quick calcula8on of maximum observed body roll at the 8me and reducing to an

arbitrary low value of throQle).

This ultra simple throQle control immediately worked beQer! With a quick tuning of the roll

factor (performed by Flaviano Chris8an Reyes, a team member on another project who took an

interest in this experiment), this agent consistently outperformed the original agent as well as

the agent being developed by that team.

The insight gained from this experience was applied to preparing an agent for entry into the

ROAR series race, by the Winning ROAR!! Project Team 1 (of two teams), composed of James

Cheney and Chufan Guo. Michael Wu graciously offered support as a ROAR pla]orm consultant,

and his help was instrumental in the success of our team.

Strategy, Design, and Implementa8on

During refinement of this agent, and experimenta8on with other steering control strategies, the

decision was taken to change the course for the race to the Berkeley map. This change defined

new challenges. While the old course was largely a giant figure-8 shape, the new course was

much more rectangular (see Figure 2 below). In the figure-8 shape, managing speed through

long sweeping turns was a key component for success, while in the more rectangular Berkeley

map, maximizing speed along long straightaways was key. Another significant change was the

waypoint map, which went from a fine-grained plot of 6512 points, to a coarse-grained plot

with only 263 points for a similar distance. This had the effect of the agent cucng corners too

sharply and colliding with the inner barrier in some turns (see Figure 1 below).

The coarseness of the waypoint map was addressed in two different ways. In the first approach,

the way points had curve ficng applied, crea8ng 5000 points of a very smooth course (see

Figure 2 above), which was an improvement over the original method (in which the points were

generated by manually driving the course via keyboard input, which resulted in a rough plot).

This method worked great, but it was determined that an alternate set of waypoints was not

allowed. Therefore, we needed to either move the smooth waypoint genera8on into the live

agent or try an alterna8ve approach. The second approach was to simply have a less responsive

steering control, which would not respond fast enough to cut through the corner between two

waypoints (see Figure 1 above), but would respond fast enough to navigate the curves overall.

The second approach worked sa8sfactorily. Future refinement may re-try the smooth curve

approach.

With this issue resolved, focus shided to addressing the key component to a fast 8me on the

Berkeley track - maximizing speed in the long straightaways. First, in order to maximize speed in

the straightaways, we had to find a way to go as fast as possible, yet reduce speed in 8me to

make it safely through every turn. Second, we need to lose as liQle speed in turns as possible,

as it takes 8me to accelerate back to high speed, especially on the uphill por8on of the course.

The strategy for going fast was to always apply maximum throQle on straight por8ons - star8ng

from the exit of a turn. To slow for turns, a look-ahead algorithm was applied to reduce throQle

(there were no brakes - only throQle varia8ons) in 8me to safely yet minimally reduce speed for

curves. This look-ahead used the waypoints and trigonometry to calculate the heading change

Figure 1

Curve example

(exaggera8on of upper led corner for

illustra8on)

Figure 2

Curve ficng to Berkeley waypoint map

in the road ahead, by comparing the current vehicle heading (provided by CARLA) to the angle

of the line segment between two waypoints on the path ahead in reference to the

environment’s coordinate system (heading error). The throQle was reduced by a factor of the

magnitude of the heading error, and the distance ahead of the points used for comparison was

determined by a factor of speed. This resulted in reducing the speed further in advance when

going faster, and reducing it more aggressively in propor8on to the increase in curvature. Once

this process was working, it was a maQer of tuning these factors to achieve the best

performance on the track. This approach was the most cri8cal aspect of strong and safe

performance in the race.

The second part of maximizing speed on the straightaways was maximizing speed through the

turns, so a higher speed could be reached sooner for the straight sec8ons. This was

accomplished by using the Roll ContRoll to maximize speed through the corners by accelera8ng

to the limits of controlled trajectory with a liQle sliding in the turns.

The key issues addressed in the Roll ContRoll approach to fast lap 8mes were discussed above.

The basis of overall steering control was adapted from the basic PID controller provided in the

ROAR pla]orm. One issue encountered was that aggressive tuning (high gain) in this controller

resulted - as expected from control theory - in instability, resul8ng physically in the car

oscilla8ng back and forth across the desired path of travel un8l it crashes, turns around, or a

new input reset the oscilla8on. The gain had to be tuned to keep the car tracking the desired

path sa8sfactorily, while not introducing detrimental oscilla8ons.

Conclusion

In summary, the Roll ContRoller agent implemented a PID steering control (essen8ally PD as the

integral gain was not really needed), with throQle control being implemented by the Roll

ContRoller algorithm combined with a speed-sensi8ve look ahead for turns. Tuning of the PD

gains, look-ahead speed and throQle factors, and the roll factor were accomplished

experimentally to sa8sfactory performance in terms of speed and safety.

There is further room for improvement, refinement, and experimenta8on. Machine learning

could be applied to tune all of the control factors, which would op8mize performance. There

are other steering control solu8ons that may offer superior integra8on possibili8es - for

example a Stanley inspired control which implemented the look ahead calcula8on to widen the

vehicle’s approach to turns was aQempted, but not adequately finalized to enter the

compe88on. If finalized, it is hoped this will allow even higher speed through corners,

significantly reducing lap 8mes. The waypoint refinement could also be implemented in the

agent, and then this agent version tuned with machine learning to see if it resulted in

improvement. Finally, using an accelerometer to gauge cornering limits would likely prove

superior to using roll, especially for vehicles with aggressive suspension tuning (this race used a

passenger car tuning, that offered plenty of body roll for applica8on in the Roll ContRoller

algorithm).

Control Module Code

class PIDRollController(Controller):
 def __init__(self, agent, steering_boundary: Tuple[float, float],
 throttle_boundary: Tuple[float, float], **kwargs):
 super().__init__(agent, **kwargs)
 self.max_speed = math.ceil(2*self.agent.agent_settings.max_speed)
 self.throttle_boundary = throttle_boundary
 self.steering_boundary = steering_boundary
 self.config = json.load(Path(agent.agent_settings.pid_config_file_path).open(mode='r'))
 self.long_pid_controller = LongPIDController(agent=agent,
 throttle_boundary=throttle_boundary,
 max_speed=self.max_speed,
 config=self.config["longitudinal_controller"])
 self.lat_pid_controller = LatPIDController(
 agent=agent,
 config=self.config["latitudinal_controller"],
 steering_boundary=steering_boundary
)
 self.logger = logging.getLogger(__name__)

 def run_in_series(self, next_waypoint: Transform, **kwargs) -> VehicleControl:
 throttle = self.long_pid_controller.run_in_series(next_waypoint=next_waypoint,
 target_speed=kwargs.get("target_speed",
self.max_speed))
 steering = self.lat_pid_controller.run_in_series(next_waypoint=next_waypoint)
 return VehicleControl(throttle=throttle, steering=steering)

 @staticmethod
 def find_k_values(vehicle: Vehicle, config: dict) -> np.array:
 current_speed = Vehicle.get_speed(vehicle=vehicle)
 k_p, k_d, k_i = .5, 0.1, 0
 for speed_upper_bound, kvalues in config.items():
 speed_upper_bound = float(speed_upper_bound)
 if current_speed < speed_upper_bound:
 k_p, k_d, k_i = kvalues["Kp"]*.4, kvalues["Kd"]*.3, kvalues["Ki"]*.05 #******* lowered gain for
smoothness
 break
 return np.clip([k_p, k_d, k_i], a_min=0, a_max=1)

*** original Roll ContRoller + v2 ***
class LongPIDController(Controller):
 def __init__(self, agent, config: dict, throttle_boundary: Tuple[float, float], max_speed: float,
 dt: float = 0.03, **kwargs):
 super().__init__(agent, **kwargs)
 self.config = config
 self.max_speed = max_speed
 self.throttle_boundary = throttle_boundary
 self._error_buffer = deque(maxlen=10)

 self._dt = dt

 def run_in_series(self, next_waypoint: Transform, **kwargs) -> float:
 target_speed = min(self.max_speed, kwargs.get("target_speed", self.max_speed))
 # self.logger.debug(f"Target_Speed: {target_speed} | max_speed = {self.max_speed}")
 current_speed = Vehicle.get_speed(self.agent.vehicle)

 print('max speed: ',self.max_speed)

 k_p, k_d, k_i = PIDRollController.find_k_values(vehicle=self.agent.vehicle, config=self.config)
 error = target_speed - current_speed

 self._error_buffer.append(error)

 #****************** implement look ahead *******************
 la_err = self.la_calcs(next_waypoint)
 # kla = .09
 #kla = 1/11000 # *** calculated ***
 kla = 1/10000 # *** tuned ***

 if len(self._error_buffer) >= 2:
 # print(self._error_buffer[-1], self._error_buffer[-2])
 _de = (self._error_buffer[-2] - self._error_buffer[-1]) / self._dt
 _ie = sum(self._error_buffer) * self._dt
 else:

 _de = 0.0
 _ie = 0.0
 # output = float(np.clip((k_p * error) + (k_d * _de) + (k_i * _ie), self.throttle_boundary[0],
 # self.throttle_boundary[1]))
 print(self.agent.vehicle.transform.rotation.roll)
 vehroll = self.agent.vehicle.transform.rotation.roll
 if current_speed >= (target_speed + 2): # *** reduces speed at max limit more smoothly
 out = 1 - .08 * (current_speed - target_speed)
 # *** old guesses ***
 # else:
 # if abs(self.agent.vehicle.transform.rotation.roll) <= .35:
 # out = 6 * np.exp(-0.05 * np.abs(vehroll))-(la_err/180)*current_speed*kla
 # else:
 # out = 2 * np.exp(-0.05 * np.abs(vehroll))-(la_err/180)*current_speed*kla #
*****ALGORITHM*****
 # *** calculated formula ***
 else:
 if abs(self.agent.vehicle.transform.rotation.roll) <= 1.2:
 out = 2 * np.exp(-.03 * np.abs(vehroll))-la_err*current_speed*kla
 else:
 out = np.exp(-.06 * np.abs(vehroll))-la_err*current_speed*kla # *****ALGORITHM*****

 output = np.clip(out, a_min=0, a_max=1)
 print('*************')
 print('vehroll:',vehroll)
 print('unclipped throttle = ',out)
 print('throttle = ', output)
 print('*************')

 return output

 def la_calcs(self, next_waypoint: Transform, **kwargs):

 current_speed = int(Vehicle.get_speed(self.agent.vehicle))
 cs = np.clip(current_speed, 70, 200)

 la_indx = 43 #coarse points

 lf1 = math.ceil(2*cs/la_indx)
 lf2 = math.ceil(3*cs/la_indx)
 print ('+++++++++++ curr wp indx: ',self.agent.local_planner.get_curr_waypoint_index()+lf2+4)
 print ('length wp queue',len(self.agent.local_planner.way_points_queue))
 if self.agent.local_planner.get_curr_waypoint_index()+lf2+4<=\
 len(self.agent.local_planner.way_points_queue):

 next_pathpoint1 = (self.agent.local_planner.way_points_queue\
 [self.agent.local_planner.get_curr_waypoint_index()+lf1])
 next_pathpoint2 = (self.agent.local_planner.way_points_queue\
 [self.agent.local_planner.get_curr_waypoint_index()+lf1+1])
 next_pathpoint3 = (self.agent.local_planner.way_points_queue\
 [self.agent.local_planner.get_curr_waypoint_index()+lf1+2])
 next_pathpoint4 = (self.agent.local_planner.way_points_queue\
 [self.agent.local_planner.get_curr_waypoint_index()+lf2+1])
 next_pathpoint5 = (self.agent.local_planner.way_points_queue\
 [self.agent.local_planner.get_curr_waypoint_index()+lf2+2])
 next_pathpoint6 = (self.agent.local_planner.way_points_queue\
 [self.agent.local_planner.get_curr_waypoint_index()+lf2+3])

 print('next waypoint: ',
self.agent.local_planner.way_points_queue[self.agent.local_planner.get_curr_waypoint_index()])
 print('$$$$$$$$$$$$$way points length:
',self.agent.local_planner.get_curr_waypoint_index(),'/',len(self.agent.local_planner.way_points_queue))

 nx0 = next_pathpoint1.location.x
 nz0 = next_pathpoint1.location.z
 nx = (
 next_pathpoint1.location.x + next_pathpoint2.location.x +
next_pathpoint3.location.x + next_pathpoint4.location.x + next_pathpoint5.location.x +
next_pathpoint6.location.x) / 6
 nz = (
 next_pathpoint1.location.z + next_pathpoint2.location.z +
next_pathpoint3.location.z + next_pathpoint4.location.z + next_pathpoint5.location.z +
next_pathpoint6.location.z) / 6
 nx1 = (next_pathpoint1.location.x + next_pathpoint2.location.x + next_pathpoint3.location.x) / 3
 nz1 = (next_pathpoint1.location.z + next_pathpoint2.location.z + next_pathpoint3.location.z) / 3
 nx2 = (next_pathpoint4.location.x + next_pathpoint5.location.x + next_pathpoint6.location.x) / 3
 nz2 = (next_pathpoint4.location.z + next_pathpoint5.location.z + next_pathpoint6.location.z) / 3

 npath0 = np.transpose(np.array([nx0, nz0, 1]))
 npath = np.transpose(np.array([nx, nz, 1]))
 npath1 = np.transpose(np.array([nx1, nz1, 1]))
 npath2 = np.transpose(np.array([nx2, nz2, 1]))

 path_yaw_rad = -(math.atan2((nx2 - nx1), -(nz2 - nz1)))

 path_yaw = path_yaw_rad * 180 / np.pi
 print(' !!! path yaw !!! ', path_yaw)

 veh_yaw = self.agent.vehicle.transform.rotation.yaw
 print(' !!! veh yaw !!! ', veh_yaw)
 ahead_err = abs(abs(path_yaw)-abs(veh_yaw))

 else:
 ahead_err = 105

 if ahead_err < 60:
 la_err = 0
 else:
 la_err =(.05 * ahead_err)**3

 print('--------------------------------------')

 print('** la err **', la_err)
 print('--------------------------------------')

 return la_err

 #***

***** end original version Roll ContRoller *****

class LatPIDController(Controller):
 def __init__(self, agent, config: dict, steering_boundary: Tuple[float, float],
 dt: float = 0.03, **kwargs):
 super().__init__(agent, **kwargs)
 self.config = config
 self.steering_boundary = steering_boundary
 self._error_buffer = deque(maxlen=10)
 self._dt = dt

 def run_in_series(self, next_waypoint: Transform, **kwargs) -> float:
 """
 Calculates a vector that represent where you are going.
 Args:
 next_waypoint ():
 **kwargs ():
 Returns:
 lat_control
 """
 # calculate a vector that represent where you are going
 v_begin = self.agent.vehicle.transform.location.to_array()

 print(v_begin)
 print('next wp x: ', next_waypoint.location.x)
 print('next wp z: ', next_waypoint.location.z)
 print('next wp y: ', next_waypoint.location.y)

 direction_vector = np.array([-np.sin(np.deg2rad(self.agent.vehicle.transform.rotation.yaw)),
 0,
 -np.cos(np.deg2rad(self.agent.vehicle.transform.rotation.yaw))])

 v_end = v_begin + direction_vector

 v_vec = np.array([(v_end[0] - v_begin[0]), 0, (v_end[2] - v_begin[2])])
 # calculate error projection
 w_vec = np.array(
 [
 next_waypoint.location.x - v_begin[0],
 0,
 next_waypoint.location.z - v_begin[2],
]
)

 v_vec_normed = v_vec / np.linalg.norm(v_vec)
 w_vec_normed = w_vec / np.linalg.norm(w_vec)
 error = np.arccos(v_vec_normed @ w_vec_normed.T)
 _cross = np.cross(v_vec_normed, w_vec_normed)

 if _cross[1] > 0:
 error *= -1
 self._error_buffer.append(error)
 if len(self._error_buffer) >= 2:
 _de = (self._error_buffer[-1] - self._error_buffer[-2]) / self._dt
 _ie = sum(self._error_buffer) * self._dt
 else:
 _de = 0.0
 _ie = 0.0

 k_p, k_d, k_i = PIDRollController.find_k_values(config=self.config, vehicle=self.agent.vehicle)
 print ('kp, kd, ki: ', k_p, k_d, k_i)
 lat_control = float(
 np.clip((k_p * error) + (k_d * _de) + (k_i * _ie), self.steering_boundary[0],
self.steering_boundary[1])
)
 # lat_control = float(
 # np.clip((k_p * error) + (k_d * _de) + (k_i * _ie), -.9, .9)
 #)

 print('lateral control:',lat_control)
 return lat_control

