
ROAR-RL 1

ROAR End-to-End Reinforcement Learning

Xuan Liu, Federico Palacios, and Franco Leonardo Huang

University of California Berkeley

Author Note

All authors contributed equally to this research. Correspondence concerning this

article should be addressed to either of authors, E-mail: lx971223@berkeley.edu,

franco_huang@berkeley.edu, fedepal45@berkeley.edu

ROAR-RL 2

Abstract

Serious crashes are usually due to human errors and self-driving would signiĄcantly reduce

the number of accidents. However, training a car to drive itself requires failures, but

crashing in the real world is too expensive and dangerous. Therefore, in our project, we

train a car to race around a virtual map of Berkeley and proposed to use end-to-end

reinforcement learning algorithms to help us explore as many states as possible and learn

how to drive in that situation. Inside the car agent, we adopt state-of-the-art

Reinforcement Learning algorithms such as Proximal Policy Optimization to teach our

model to navigate the course. With an End-to-end implementation, we can generalize our

model to more situations than previous proportionalŰintegralŰderivative (PID) controller

versions can.

Keywords: ROAR competition, Self-driving, Reinforcement Learning, PPO agent,

Carla environment

ROAR-RL 3

Summary

Introduction 4

Related Work 6

STRUCTURE AND TECHNIQUE 9

Carla Environment . 10

Observation Agent . 11

Feature Extraction Model . 15

Proximal Policy Optimization Algorithm . 15

Calculation of Action and Reward . 17

Evaluation 17

Steering only control . 17

Full Control . 29

Berkeley Major . 31

Conclusion 32

Future Work 33

ROAR-RL 4

ROAR End-to-End Reinforcement Learning

Introduction

Autonomous driving provides a wide range of beneĄts. First and foremost is safety.

According to the National Highway Traffic Safety Administration, 94% of serious crashes

are due to human error(NHTSA, 2021). Automation would signiĄcantly reduce the number

of accidents and has the potential to save thousands of lives every year. Another beneĄt to

automated driving is the reduction of traffic congestion. With numerous vehicles becoming

autonomous, it becomes easier to control traffic Ćow. Autonomous cars also provide

independence to individuals who cannot operate classic cars due to disability.

Although autonomous driving has many advantages, there are still many challenges

and problems in its application. One problem is that the expense of testing has risen

dramatically when developing new algorithms for autopilot. Small to midsize businesses

and major research colleges cannot afford the computer expenditures of autonomous

driving and managing an extensive Ćeet of vehicles. In addition, the cost of crashing and

ruining the self-driving car during the test is exorbitant. The second problem is that

driving is particularly challenging for artiĄcial intelligence. One explanation is that

artiĄcial intelligence is not as adaptive as the human brain, which can fail in unexpected

ways. Although self-driving cars may have a good understanding of what other vehicles are

capable of, pedestrians are unpredictable and can alter their attitudes at any time.

Engineers now have to be able to manage and deploy a system that can accommodate 99

percent predictable material and a small amount of uncertain content. The Ąnal 1% is

exceptionally challenging, which is why self-driving cars are currently off the road.

Fortunately, ROAR addresses this issue by creating low-cost artiĄcial intelligence,

autonomous driving software, and open-source hardware reference designs. ROARŠs

hardware design costs less than $500 and can construct a self-driving remote-controlled

automobile that can reach speeds of more than 70 miles per hour. Meanwhile, the ROAR

competition encourages the public to solve the second issue by providing a platform that

ROAR-RL 5

includes a simulated environment in which competitors can test their self-driving

algorithms. Our goal is to develop an agent as accurately as possible for self-driving in such

a simulation environment. Traditionally, manually tuned PID-style controllers dominated

the ROAR competition. While they have been effective, this method is not generalizable

and has limited exploration for a truly optimal solution. As a result, we are training our

model in the game setting of car racing. The simulator contains the roads and buildings for

UCB, and the goal of the car racing is to complete a lap around it. There are four sharp

turns for the Berkeley minor map and ten sharp turns for those in the Berkeley major in

the lap. The player can only see the nearby view during the drive and control the throttle,

steering, and brake. To simplify the situation, there is only one car racing at a time in the

simulator. Also, only the racing time is considered.

We propose to use end-to-end reinforcement learning algorithms to help us explore

as many states as possible and learn how to drive in that situation. SpeciĄcally, we use the

occupancy grid map of each frame as input to allow the agent to automatically sense the

current condition, as opposed to the prior PID method, which only considers waypoints to

enable vehicles to pass through the pre-set racing line as rapidly as feasible. On the other

hand, the occupancy grid map is more concise and more accessible to comprehend by

models than the real-world image data. Before we passed the input to the encoder, we

extracted the last four frames for each frame and did frame stacking to incorporate more

information. Then our four stacked input frames go through a Convolutional Neural

Network (CNN) model, Ćattened and passed into several fully connected layers. These

CNN layers help the model understand what the changes in time represented in the input

data. We then pass the features to our Proximal Policy Optimization or PPO algorithm.

This On-Policy algorithm will take our features and reward information to decide what

course of action to take next. Finally, PPO passes its determined outputs to CARLA(Car

Learning to Act) for execution.

ROAR-RL 6

Related Work

Reinforcement learning has a wide range of applications in autonomous driving. For

example, it can be applied to a part of self-driving like planning and optimizing driving

trajectories or directly acting as an end-to-end agent that collects input from the

environment and directly outputs the carŠs actions. Figure 1 shows the interaction of

reinforcement learning.

Figure 1

What is Reinforcement Learning

"Safe Trajectory Planning Using Reinforcement Learning for Self Driving" was

trying to use a reinforcement learning algorithm to help their agent Ąnd a safe trajectory in

self-driving.(Coad et al., 2020) This is a typical non-end-to-end reinforcement learning

application. Because the end-to-end learning process is more challenging, only the agent is

responsible for planning the lane. Then the lane following procedure is delegated to other

controllers. Some researchers (Mania et al., 2018) also compare the classic optimal control

method with the reinforcement learning method to Ąnd their performance difference in

trajectory planning.

Early word end-to-end reinforcement learning application, using behavior cloning to

learn from demonstration, which means to imitate the behavior of experts as much as

possible(Pomerleau, 1989). Later, "Learning driving styles for autonomous vehicles from

demonstration" recommends an expert demonstration of a human driver using the

maximum entropy inverse RL to learn comfortable driving trajectory

ROAR-RL 7

optimization.(Kuderer et al., 2015) This work was done by behavior cloning algorithms, a

supervised learning reinforcement learning algorithm. Although behavior cloning can be

applied to self-driving cars, this method has obvious drawbacks. It is difficult for the agent

to adapt to brand new situations. In addition, there will be a problem of prediction bias

when a minor change happens to the environment.

After that, researchers began to use a DQN-like reinforcement learning algorithm to

assist self-driving(Sharifzadeh et al., 2017) (Li & Czarnecki, 2019). In addition, there exist

some model-based deep RL algorithms which are directly processing pixel inputs and learn

policies(Wahlström et al., 2014). When it comes to real-world settings, "Learning to Drive

in a Day" conducted simulation training and then used the onboard computer for real-time

training(Kendall et al., 2018), the agent they trained was able to learn how to follow the

lane and completed a real-world test on a 250-meter section.

When applying reinforcement learning to autonomous driving, the most important

thing is how to deĄne state spaces, action spaces, and rewards. A survey gives us a review

of different state and action representations used in self-driving research (Leurent, 2018).

Commonly used state-space features of autonomous vehicles include the position,

orientation, and speed of the autonomous vehicle and the border and obstacles in the

environment.

That said, the carŠs environment is taken out quite complex. We took inspiration

from the Atari video game console to simplify it into a more manageable state. "A Graphic

Guide to Implementing PPO for Atari Games" trained a Reinforcement Learning model to

play the Atari game "Breakout" by observing the simple two-dimensional images rendered

on the screen(Atari). It successfully determined what direction to move the paddle to

achieve the highest score. In addition, it was able to give the model an understanding of

motion bypassing four-screen frames at different moments in time. At Ąrst glance, the

Atari game may seem very different from ours, but we can see a similar two-dimensional

structure when focusing on the occupancy grid map.

ROAR-RL 8

Our model uses the occupancy grid map as the primary state representation,

integrating vehicle position, orientations, obstacles, and manually set reward lines. For the

design of actions, the continuous value actuators generally set in the industry for vehicle

control include steering, throttle, and brake. Last but not least, the reward design has

always been a point of value debate. Some examples include the distance to the

destination, the speed of the self-vehicle, the collision of objects, avoiding extreme braking

or steering, etc. (Kardell & Kuosku, 2017). We considered a number of the factors

mentioned above in the modelŠs design and innovatively designed way lines perpendicular

to the current heading as indicator to help the reinforcement learning agent accelerate the

learning progress.

ROAR-RL 9

STRUCTURE AND TECHNIQUE

Figure 2

Representation of the Input Data

Our project consists of four parts, observation agent, feature extraction model, PPO

agent, and environment. As the image 2 shows, during each run, to make an action

decision based on the current state, the agent Ąrst generates the helpful information of the

four last frames, including the occupancy grid map, reward lines, and vehicle state. Then,

the feature extraction model receives the current state as the input to compute the features

and feed them into the PPO agent. After that, the PPO agent calculates action based on

the input and passes the action for the vehicle, throttle, steering, and braking, to the

environment. Finally, the environment part uses the action to update the Carla simulator

and save the current state to the agent.

ROAR-RL 10

Carla Environment

Our project is run in the CARLA Open-source simulator for autonomous driving

research. Carla, also known as car learning to act, is an open-source simulator for

autonomous driving research. The open-source simulation platform supports Ćexible

speciĄcation of sensor suites, environmental conditions, full control of all static and

dynamic actors, map generation, etc.

Berkeley map. We use CARLA to recreate virtual models of our two racing

tracks, "Berkeley Minor" and ŞBerkeley MajorŤ (Both based on the UC Berkeley Campus).

Berkeley Minor map contains four roads around UCB which form a lap. Berkeley Major

map is an updated version of the Minor map, which includes a 10-times large lap and many

more and sharper turns. The CARLA API also comes with various vehicles for us to insert

and control. Several parameters, such as frame shape, acceleration, and wheel friction, are

tuned to represent the vehicle model accurately. In our project, our agent uses a Tesla

Model 3 to navigate the track.

Multiple Spawn Points. The spawn points of the car were pre-set by the

CARLA environment. In the Berkeley minor map, there are only two spawn points, and

the locations of both points are very close. And so, we were able to successfully train a

model using a single spawn location for the "Berkeley Minor" track. However, when moving

onto the much larger "Berkeley Major" we ran the risk of over-Ątting to a particular section

of the track before reaching new obstacles or types of turns. For example, if we spawned

the model during a section of the course that had straight lines and easy, right-hand turns,

it would learn to navigate that environment well. As the model progresses further and

further down the path, this behavior will be reinforced and solidiĄed. By the time it

reaches the end of the course, where it is presented with an entirely new kind of obstacle,

such as a sharp series of left turns, the model would struggle to adapt its known methods

to this new problem.

A solution presented in this Youtube video describes spawning a vehicle in different

https://www.youtube.com/watch?v=SX08NT55YhA

ROAR-RL 11

locations along with the map during training. This method exposes the model to several

different scenarios and obstacles, which leads to a more generalized model. For Berkeley

Major, we apply this method across twelve different spawn points, as shown in 3, as the

map is very diverse. Once we have a general working model, we can begin to train from the

initial spawn point of the race and focus on over-Ątting to achieve an optimal racing line

and the fastest time.

Figure 3

Multiple Spawn Points in Berkeley Major Map

Observation Agent

The OGM is a 2D array representing a birdŠs eye view of the map. The birdŠs eye

view of the map has a more detailed and further exploration of the map. The map is Ąrst

generated by manually driving the vehicle around the course and using the built-in sensors

ROAR-RL 12

(simulated by CARLA) to estimate the track and surroundings. After cleaning up the

image, the clearly deĄned borders outline our course.

There are three components in the observation, occupancy grid map, reward lines,

and vehicle state. The Occupancy Grid Map or OGM contains information about the

simulation environment. Since our task is driving on the road, the wall locations are

extracted as obstacles to being in OGM. The reward lines represent the step-by-step

subtask to give a reward when it passes certain lines, which cut the whole loop into

hundreds of segments. The vehicle state includes the car location and car rotation. Since

the observation is ego-centric, the vehicle is always in a Ąxed place of the OGM, and the

OGM is rotated so that the car is always facing upwards. The last four observations are

stacked to show the movement and used for the modelŠs input. The Ągure below shows the

result observation. Hence the input space is a matrix of dimension 4x4x84x84, in which

84x84 represents the area in the entire environment that our car can observe.

Reward Lines. The reward line is 20-length-lines with location and reward

distribution. They indicate rewards to the vehicle on its way to the end. They are

distributed with equal distance along the track, and that distance can be manually tuned.

We make the reward line sparse in the map by taking an interval of 15. It is then loaded

into a planning list in the observation agent, and the current target is updated if the

vehicle passes the line. The observer agent records the last reward line index passed and

iterates over the following reward lines to Ąnd the line(s) vehicle passes. After that, the

reward for passing is calculated based on the value of the grid of the line the car passed.

The agent checks if the vehicle has passed the current line on each frame. If it

passes the line, the current reward line is updated to the next one based on the interval

and saves the change into the history for observation. The history includes all the updates

in the last four calls in each frame.

Vehicle State. The vehicle state includes the location, rotation, and velocity.

There are three approaches to presenting the state. The Ąrst one uses the frame stacked

ROAR-RL 13

egocentric map to represent the velocity, using the map rotation to show the vehicle

rotation, and maintaining the map centered around the vehicle. The second approach

centers the map on the center of the reward line so that the vehicleŠs movement also

determines the rotation, and the relative location is calculated. Finally, the third approach

is to input those features directly without rotating or translating the map. Our project

implemented all three methods and chose the Ąrst one as the baseline.

Reward Line Generation. The reward line centers are along the planned

trajectory and saved in a Ąle. There are several trajectory designs, the center of the road,

the minimum curvature line, and the car racing line. The project is currently using the

centerline. After loading the centers, the direction of each reward line is calculated based

on the direction normal to the direction from the last center to the current center. The

centers are picked based on the set interval to have a different distance for different

settings. The reward line is generated based on the location and direction with a length of

20. The value of the reward is calculated based on the distribution. We used a Gaussian

distribution with a standard deviation of 10 to encourage the vehicle to go towards the

center. After discovering that the car can learn the racing line in the long term, we switch

the distribution back to uniform.

The reward lines are plotted on the map based on the vehicleŠs relative location.

Previously, the project used to only plot the following reward line. However, now, it plots

all the reward lines within sight of the observation space to help the PPO agent with future

planning.

Stacked OGM. Our simulation input data begins by grabbing a small portion of

the complete environment map. In our case, the frame size is 84x84 pixels. Then we

separate the perceived model input, a birdŠs eye view of the environment-centered vehicle,

and split them into individual channels. The Map Data channel contains the

representation for collision borders. The Reward Data channel has the representation for

the reward lines in front of the vehicle that has yet to be crossed. Finally, the Vehicle Data

ROAR-RL 14

channel contains the representation of the car. Together, these three channels represent the

frame data of a given point in time. We combine the current frame data with the frame

data of three previous points in time to make the complete input data stack to our CNN

model, as shown in Ągure 1. It should be noted that all four data frames have an

ego-centric orientation with respect to the vehicle of the current data frame.

This method of stacking four frames at different points in time is crucial to our

modelŠs perception of change over time. The model can ŠseeŠ further and further into

previous states in time by stacking additional frames and comparing the differences. This

comparison leads to the perception of speed, change in direction over time, and even if the

vehicle has some drift due to loss of traction.

Frame Skipping. Frame-skipping is a method we use to ignore speciĄc frames of

the environment. As you can see in the Ągure 4 below, we ignore three frames of input

from the environment and observe the 4th. By doing so, we can tune how far back into the

past our model can observe without slowing down the agent with larger input size. When

the vehicle moves at slower speeds, this method can be very effective as there is very little

change between any two given frames if the environment changes slowly. At faster speeds,

this method becomes less necessary, and so it was not essential for the Full-Control model,

which could achieve speeds of 195kph[Ensure to update with Ąnal speed results].

Figure 4

Frame-Skipping Visualization with 3 skipped frames

ROAR-RL 15

Feature Extraction Model

The feature extraction model receives the current state information from the

observation agent and computes the pertinent features before feeding them into the

Proximal Policy Optimization algorithm or PPO. The CNN model we use to do the feature

extraction now is the same as the one in Atari since we believe that the model in Atari is

powerful enough.

Proximal Policy Optimization Algorithm

The PPO On-Policy algorithm calculates action based on the input features and

passes the action for the vehicle to the environment. The three agent outputs of PPO,

throttle, steering, and braking, are in continuous action space. Throttle and braking are

both bounded from [0,1], and steering is bounded from [-1,1]. These outputs are then

passed to CARLA to execute in one simulation frame.

Loss Function. PPO is a policy gradient method that introduces a probability

ratio to its loss function which is then clipped. This keeps any one update from being too

large or too small which greatly helps this method from skipping over a potential reward

peak. (Daryl & Daniel, 2021)

ROAR-RL 16

Figure 5

Loss Function with probability ratio

Figure 6

Loss Function with probability ratio after clipping

Random Action. Each time the PPO agent generates a random action, it

generates a value with an average of 0 and an std of 1. Thus, the action space is changed

for throttle, steering, and braking for the Ąrst to have a high average value and the rest to

have a low average value. In this way, the vehicle can have better results when driving

randomly. As a result, the action space for the throttle is set from -2.5 to -0.5 so that it

has a high probability of generating a high value. The action space for the steering is set to

-5 to 5 so that the absolute value is small most of the time. The action space for the

ROAR-RL 17

braking is set to 1 to 3 so that the brake value is 0 for most of the time to speed up.

PPO Agent setting. The number of inputs per second in CARLA is set to 8.

The beta, or entropy coefficient, value is set to 0. The number of time steps per rollout is

set to be 3000, which is about 60s.

Calculation of Action and Reward

The environment gets the action from the PPO agent and uses it to control the

vehicle in CARLA. After the state is updated in the CARLA and then updated for the

observation agent, the reward to reward or punish a certain action is calculated to train it

towards the desired behavior. The reward rewards on crossing the reward line to drive

further. It also punishes crashing to avoid driving into the wall and being alive to move all

the time at high speed.

Evaluation

Steering only control

Initial Baseline Run. Initial Baseline for a converging model that was capable of

completing the Berkeley Minor Map. Our Reward function grants a reward for crossing a

checkpoint, penalizes for crashing, and gives a very small penalty every step. We will refer

to this last penalty as the "Hot Water" penalty and is what we will use to encourage to

model to complete the course as fast as it can. It should be noted that the complete course

is 5175 checkpoints.

ROAR-RL 18

Figure 7

Initial Baseline Run Performance

Scaling Checkpoint Reward. In this series of tests, we introduce a scalar

variable to adjust how much reward we grant for crossing a given line. For the following

runs, our reward function is as follows:

• Reward for crossing a checkpoint =

cross_location*checkpoint_interval*time_to_waypoint_ratio

• Penalty every frame ("Hot Water penalty") = -1

• Penalty for crashing = -200

where: cross_location = a value ranging from 0.5 to 1.0 based on where the vehicle crosses

the checkpoint (see Figure below) checkpoint_interval = 15, this refers to the checkpoint

density that we are working with time_to_waypoint_ratio = a value used to scale the

reward for each checkpoint

ROAR-RL 19

Figure 8

Gaussian Reward line example

In these runs, we tested different the values 0, 0.25, 1, 2, 4, and 8 for

time_to_waypoint_ratio (Reffered to below as ŠRŠ). The Inital Baseline Run is also

included for reference.

Figure 9

Performance results for different ŠRŠ values compared with the Initial Baseline Run

ROAR-RL 20

We can see from the Average Episode Length that all runs converge to a similar

curve. After 1 million global steps, the performance of each model is pretty similar. What

we were interested in this test is how quickly the model learned to complete the course and

how conĄdent the model became over time which we observed in the Entropy Loss. We

found that when the time_to_waypoint_ratio was set to 0.25 and 1, the model had a good

balance of course completion time and conĄdence over time. What we found most

interesting was the fact that the model continued to train and complete the map despite

having a net negative reward when the time_to_waypoint_ratio was less than 1.

Negative Reward Limit. Upon observing a model that converged with a

negative net reward, we determined that there should be a reward function where the

model should optimize immediate termination after completing the entire course. The

reward function we tested on this run is as follows:

• Reward for crossing a checkpoint =

cross_location*checkpoint_interval*time_to_waypoint_ratio

• Penalty every frame ("Hot Water penalty") = -1

• Penalty for crashing = -25

where: cross_location = a value ranging from 0.5 to 1.0 based on where the vehicle crosses

the checkpoint (see Figure below) checkpoint_interval = 15, this refers to the checkpoint

density that we are working with time_to_waypoint_ratio = 0.25, a value used to scale

the reward for each checkpoint In both runs below the net reward is negative as they both

have a time_to_waypoint_ratio of 0.25. The only difference is that penalty for crashing is

signiĄcantly less in this test.

ROAR-RL 21

Figure 10

Performance results when exploring the Negative Reward Limit

This behavior shows that the model explored the entirety of the course and

determined that it would not be able to achieve a better result than turning and crashing

into the wall immediately. This also shows that despite course completion having a net

reward of -2300, the model will continue to optimize the course until the net reward is

greater than -200 or the crash penalty. We calculated the theoretical minimum number of

frames (and therefore the minimum amount of "Hot Water" penalty) and determined that

it is possible for the model to overcome the crash penalty given the amount of total

available reward from checkpoints.

Flattened Reward Line. The following tests observe the results of making the

reward for crossing a reward line even across the line such that the model receives the same

reward no matter where it crosses.

Reward for crossing a checkpoint = checkpoint_interval*time_to_waypoint_ratio

ROAR-RL 22

Figure 11

Performance for Flattened vs Gaussian Reward Lines, time_to_waypoint_ratio = 0.25

Figure 12

Performance for Flattened vs Gaussian Reward Lines, time_to_waypoint_ratio = 1

ROAR-RL 23

Figure 13

Performance for Flattened vs Gaussian Reward Lines, time_to_waypoint_ratio = 8

Highest speeds reached in a given run. In all runs the throttle is Ąxed to %80 of full

throttle.

Figure 14

Speed Performance for Flattened vs Gaussian Reward Lines

These tests show that the Ćattened reward line can result in models that are not as

consistent. However, in the Ąnal graph for Highest Speed Achieved, we can see that models

are able to reach higher speeds more often with a Ćattened reward line. When the reward

line is shaped by a Gaussian, there is an implicit racing line that the model is encouraged

ROAR-RL 24

to follow. While this may lead to more consistent results, this limits how the model

explores the track. Without the implied racing line, the model has no guide and thus

crashes into the wall more frequently while exploring the space. The beneĄt to this is that

despite the increase in crashes, models with a Ćattened reward line are able to develop

their own racing line naturally leading to faster times.

New Baseline Run. Moving forward with the most promising model, we ran an

identical run to observe for any variance. We ran this new baseline for 6 million timesteps.

Figure 15

New Baseline performance results

ROAR-RL 25

Figure 16

New Baseline top speed results

The New Baseline was run for several million timesteps and developed a very high

track completion rate. While the steering only model has no control over the throttle, it is

still able to reach higher and higher speeds by learning to reduce wobble. At the end of

training, the model has developed a clear and efficient racing line.

Policy Gradient Tests. Next we ran several tests to adjust the value function

coefficient. By doing so we can adjust the value loss and allow the model to focus more on

the Policy Gradient as it was otherwise having very little effect on the model.

ROAR-RL 26

Figure 17

Policy Gradient Test results for time_to_waypoint_ratio = 0.25

Figure 18

Policy Gradient Test top speed results for time_to_waypoint_ratio = 0.25

ROAR-RL 27

Figure 19

Policy Gradient Test results for time_to_waypoint_ratio = 1

Figure 20

Policy Gradient Test top speed results for time_to_waypoint_ratio = 1

These tests show that by increasing the focus on the Policy Gradient, the model can

learn to complete the course very quickly. However, we noticed that was due to the model

heavily avoiding the crash penalty. When we observe the speeds achieved and the modelŠs

ROAR-RL 28

performance on the course, we see that models with a larger emphasis on the Policy

Gradient are "safer" drivers but not necessarily faster drivers.

Learning Rate Tests. These tests explore the effects that various Learning

Rates have on our model when compared to the New Baseline where the Learning Rate is

set to 1e-5. This will adjust how quickly the model can change and adapt. The larger the

Learning Rate(LR), the faster the model can change.

Figure 21

Learning Rate Test results for time_to_waypoint_ratio = 0.25

ROAR-RL 29

Figure 22

Learning Rate Test top speed results for time_to_waypoint_ratio = 0.25

These tests show some upper and lower bounds for learning rates that can be used

in future runs. The slightly larger learning rate of 1e-4 showed especially promising

performance and should be considered in future runs.

Full Control

For Full Control, we adapted what we learned from the Steering Only series. While

this model does have control of Throttle, Steering, and Braking, it is still very limited.

Binary Full Control: While steering is calculated in the same way as before, Throttle and

Braking are determined from a single action output instead of two. This action output is

mapped from 0.0 to 1.0. If this action is greater than 0.5, throttle is set to 1.0 (The

maximum throttle) and braking is set to 0.0. If the action is set to 0.5 or lower, the

throttle is set to 0.0 and the brake is set to 0.8 (80% the maximum braking value).

ROAR-RL 30

Figure 23

Full Control Performance results compared to Steering only New Baseline

Figure 24

Full Control Performance top speed results compared to Steering only New Baseline

We trained this model for over 18 million timesteps and achieved very competitive

results with a fastest time of 160.625 seconds (2 minutes and 40.625 seconds) for a single

ROAR-RL 31

lap when maximum vehicle speed is set to 200kph. While many of the things we learned

from steering only were able to be immediately adapted to full control, there are plenty of

new behaviors we had to adapt to during the course of this run. Stalling, turning around,

wobble, and drifting: With the ability to brake, we noticed early on that the model would

learn to simply sit idly and not make any progress. To combat this we added a stalling

penalty that check if the vehicle was stalled for longer than 10 frames(since the vehicle

begins from a standstill). Given its new action space, the model found it was able to turn

completely around on the track and began to explore the space behind it. This was not a

problem in steering only as the model was never able to do this with the Ąxed throttle. A

Ąx was implemented that penalized the model the same way a crash did whenever reverse

progress was made on the track. One thing we noticed the model was struggling to deal

with was maintaining a straight path. This slight wobble was exaggerated the faster it

went. We realized that this was due to how we set up the action space for Steering. While

it is continuous from -1.0 to 1.0, it is virtually incapable of setting the steering value to 0.

And so we implemented a "Deadzone" range that would set the steering value to 0 when

the action was smaller than 0.001 and gave a very small reward to the model every time

the "Deadzone" is triggered. While this did not eliminate the wobble entirely, we did see

wobble reduction as well as higher top speeds. As the model began to achieve faster and

faster speeds, the vehicle began to lose traction and drift. We made no change to the

model and simply observed its behavior as it learned. Over time, the model began to apply

drift turning to its solution on different corners. On the Ąnal turn which has the sharpest

angle, the model has found plenty of success by applying a sharp drift to Ąnish the race.

Berkeley Major

Our approach for the Berkeley Major map has been similar to the Berkeley Minor

map approach in that we Ąrst attempted a steering only model. While it is able to

complete the course, albeit with an extremely slow time of over 30 min, this method is

ROAR-RL 32

extremely consistent and prone to failure in several parts of the map. Certain sections of

the track have divots that cause the vehicle to become stuck or crash the environment.

Setting a low throttle value increases the chance of getting stuck, while a value that is too

high will leave the model unable to make some of the tighter turns on the map. Due to the

map size, the implementation of multiple spawn points on this map has greatly accelerated

our training time. As "easier" sections of the map are consistently completed, we can shift

the focus onto tougher sections that our model struggles with. In the graphs below, we can

see the impact that shifting spawns has on the modelŠs progress.

Figure 25

Berkeley Major Steering Only Performance results

Our plan moving forward is to apply our Full Control method to overcome these

issues. Its ability to vary speed will be essential, along with making changes to the

Occupancy Grid Map that will conform to the sections of the track that are problematic.

Conclusion

After training for about 8 hours, our model can converge and control the car to race

to Ąnish the lap. With the beneĄt of the simulator, the training process does not need any

external label and would not cause any harm while crashing into the wall. As a result, the

cost would also be cheaper than the self-driving learning process in the real world. This

shows the power of our end-to-end solution, but we still have much work to do to achieve a

competitive result in the car racing game. Our next step is to design a better feature

ROAR-RL 33

extraction model and apply our solution to the full control version of the car racing game,

giving access to throttle and brake.

Future Work

Our model has shown that this method is more certainly viable and competitive

against current PID-methods with far less user intervention. Still, there are certainly areas

that can be improved upon or further researched. For starters, training time can be

accelerated by integrating techniques such as Multi-Agent training where multiple vehicles

are spawned at the same time and all experience is synthesized by the model. Other

methods of improving training time include optimizing the existing framework in our

repository for CARLA and the PC hardware.

Introducing obstacles for the model to avoid can create a challenge for the model

that would be more true to the real-world scenarios a car runs into on a regular basis.

Additionally, one can build upon this paper by implementing one of our trained models on

hardware. This would come with the expected challenges of transitioning from a simulated

environment to the real world, but would be instrumental in the effort to make

autonomous vehicle research more accessible and affordable.

ROAR-RL 34

References

Coad, J., Qiao, Z., & Dolan, J. M. (2020). Safe trajectory planning using reinforcement

learning for self driving.

Daryl, & Daniel. (2021). A graphic guide to implementing ppo for atari games.

Kardell, S., & Kuosku, M. (2017). Autonomous vehicle control via deep reinforcement

learning.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D.,

Bewley, A., & Shah, A. (2018). Learning to drive in a day.

Kuderer, M., Gulati, S., & Burgard, W. (2015). Learning driving styles for autonomous

vehicles from demonstration. 2015 IEEE International Conference on Robotics and

Automation (ICRA), 2641Ű2646. https://doi.org/10.1109/ICRA.2015.7139555

Leurent, E. (2018). A survey of state-action representations for autonomous driving.

Li, C., & Czarnecki, K. (2019). Urban driving with multi-objective deep reinforcement

learning.

Mania, H., Guy, A., & Recht, B. (2018). Simple random search provides a competitive

approach to reinforcement learning.

NHTSA. (2021). Automated vehicles for safety.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In

D. Touretzky (Ed.), Advances in neural information processing systems.

Morgan-Kaufmann. https:

//proceedings.neurips.cc/paper/1988/Ąle/812b4ba287f5ee0bc9d43bbf5bbe87fb-

Paper.pdf

Sharifzadeh, S., Chiotellis, I., Triebel, R., & Cremers, D. (2017). Learning to drive using

inverse reinforcement learning and deep q-networks.

Wahlström, N., Schön, T. B., & Deisenroth, M. P. (2014). Learning deep dynamical models

from image pixels.

https://doi.org/10.1109/ICRA.2015.7139555
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

	Introduction
	Related Work
	STRUCTURE AND TECHNIQUE
	Carla Environment
	Observation Agent
	Feature Extraction Model
	Proximal Policy Optimization Algorithm
	Calculation of Action and Reward

	Evaluation
	Steering only control
	Full Control
	Berkeley Major

	Conclusion
	Future Work

