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Abstract— This paper presents the record-breaking solution
developed by the team Laplace Racing for the Robot Open
Autonomous Racing (ROAR) Simulation Racing Series. Our so-
lution outperforms all previous competitors in the autonomous
racing domain by leveraging a model-free combination of Pure
Pursuit for lateral control and a PID controller for longitudinal
dynamics. Emulating the racing vehicle in the CARLA Research
Environment, our approach focuses on achieving maximum
speed and efficiency on the Monza track. We detail the
architecture of our winning controller, but also the different
approaches we have taken and their potential. Furthermore,
we provide insights into our methodologies and optimization
techniques that contributed to our success in the competition.
This paper serves as a comprehensive analysis of our winning
solution, and discusses potential future developments for further
enhancing autonomous racing performance.

I. INTRODUCTION

Autonomous driving technology has seen significant

advancements in recent years, offering promising prospects

for safer and more efficient transportation systems. A

critical component of autonomous driving systems is

the development of robust control algorithms. Racing

offers a unique opportunity to test these algorithms

in an environment where vehicles are pushed to their

extreme limits. Due to the high-risk nature of autonomous

racing competitions, they are often conducted via simulation.

The ROAR Lab was established in 2019 with the mission

to advance solutions of Autonomous Systems, Intelligent

Machines, and extreme robotics applications [1]. The

Simulation Racing Series is a competition organized by the

ROAR Lab and held on the CARLA simulator [2]. The

objective is to achieve three loops on the Monza Circuit as

fast as possible without collisions.

In this paper, we present a comprehensive study focused on

control strategies for the ROAR Simulation Racing Series

and we set a new record for the competition. Our final

solution combines an offline global trajectory optimization,

a lateral Pure Pursuit controller and a longitudinal Propor-

tional–Integral–Derivative (PID) controller.

1 Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley.
virgile.foussereau@berkeley.edu

2Department of Mechanical Engineering, University of California, Berke-
ley. huuquang huynh@berkeley.edu

II. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) is an advanced control

technique widely used in autonomous driving [3]. It operates

by utilizing a dynamic model of the vehicle to predict its

future behavior over a finite time horizon. By formulating

an optimization problem incorporating system dynamics,

constraints, and performance objectives, MPC calculates

an optimal control sequence to minimize a predefined

cost function. This predictive capability enables MPC to

proactively anticipate and adapt to system uncertainties

and disturbances, resulting in precise and robust control

actions. Notably, MPC is adept at handling nonlinearities,

constraints, and multi-input-multi-output (MIMO) systems.

However, it can be complex to implement and requires a

good dynamic model of the vehicle.

As the competition takes place in a simulated environment,

we decided to start with an MPC-based solution. Indeed, a

simulation can offer, in theory, perfect predictability which

would give a huge advantage to an MPC solution.

A. Dynamic models

The first step for MPC is to have an accurate model to

predict future states of the vehicle given its current state and

the applied controls. In our case, the controls are:

• δ: the car’s steering angle.

• th: the car’s throttle.

Both have a value in [−1, 1]. The steering angle control

can be converted to radians using the maximum steering

angle of the car but the throttle is more difficult to interpret.

Indeed, most dynamic models use the acceleration as input.

While they are strongly related, CARLA does not provide

any documentation on the relation between the throttle and

the acceleration. Due to this lack of information, our first

step was to model the acceleration using experiments.

1) Modeling the acceleration: We start by running the

car with a dummy control to collect data on acceleration. In

figure 1, we plot the acceleration at throttle=1.0 as a function

of the vehicle speed.



Fig. 1: Linear model of acceleration

Figure 1 seems to indicate that acceleration for a throttle of 1

decreases linearly with speed. However, trying to fit directly

a linear model fails due to outliers when the vehicle starts. In

order to overcome this issue, we use a RANSAC algorithm

as presented in figure 2. It discards outliers and allows us to

get a better model of the acceleration.

Fig. 2: RANSAC model of acceleration

Performing the same operation for different values of the

throttle shows that the slope is more or less conserved, the

line being simply shifted vertically. Therefore we can have

the following model of the acceleration: a = th∗ (α−γ ∗ v)
with a the acceleration, th the throttle, v the speed, and α

and γ two positive coefficients. This assumes the speed is

less than α
γ

. In our case, we find α = 4.5 and γ = 0.037.

In figure 3, we present the ground truth acceleration and the

model prediction for a full lap. The model is inaccurate in

transition phases such as the start or when changing gears

but seems to be a decent approximation in nominal phases.

Fig. 3: Acceleration model prediction over a full loop

2) Bicycle model: The first model we used for the

MPC is the bicycle model [4]. This model presents several

advantages: it simplifies the complex dynamics of a vehicle

into a manageable set of equations, making it easier to

analyze and design control systems, and due to its simplicity,

the bicycle model can be implemented in real-time control

systems with low computational overhead.

The bicycle model represents a vehicle with only two

wheels, where the front and rear wheel pairs are each

lumped into one wheel. This simplification is justified since

the roll dynamics and tire slip are not considered, so that

the velocity vector v at the center of the rear axle is always

aligned with the link between the front and rear wheel.

To model this problem, let introduce the variables sx and

sy for the position of the rear wheel, v the linear velocity,

vδ the velocity of the steering angle, δ the steering angle,

Ψ the heading and lwb the wheelbase.

The differential equations of the bicycle model are defined

as follows:

δ̇ = vδ

Ψ̇ =
v

lwb

tan(δ)

v̇ = along

ṡx = v cosΨ

ṡy = v sinΨ

Fig. 4: Bicycle Model



After researching the Internet and the CARLA simulator, we

came up with the following parameters:

Vehicle Parameter Symbol Unit Tesla Model 3

Vehicle Length l [m] 4.719
Vehicle Width w [m] 2.09
Wheelbase lwb [m] 2.875

TABLE I: Vehicle parameters for Bicycle Model

The limitation of our implementation of this model lies in

its neglect of tire slip, leading to the omission of critical

effects like understeer or oversteer. Consequently, when

the vehicle operates near its physical limits, these essential

effects are absent from the model’s predictions: at high

speed, the vehicle slips too much and crashes.

3) Single-Track model: Given that in racing, our vehicle

is close to its physical capabilities, we decided to use the

Single-Track (ST) model which considers tire slip. We lever-

age the implementation made for the CommonRoad bench-

mark [5]. In addition to the variables already introduced in

the bicycle model, we additionally require the slip angle (at

the center of gravity) β, the yaw rate Ψ̇, the longitudinal

acceleration along , the moment of inertia about z axis Iz , the

distance from center of gravity to front and rear axles lf and

lr, the center of gravity height hcg , the cornering stiffness

coefficients for front and rear CS,f and CS,r and the friction

coefficient µ. The Single-Track Model is defined as follows:

δ̇ = vδ

β̇ =
µ

v(lr + lf )
(CS,f (glr − alonghcg)δ − (CS,r(glf + alonghcg)

+ CS,f (glr − alonghcg))β + (CS,r(glf + alonghcg)lr

− CS,f (glr − alonghcg)lf )
Ψ̇

v
)− Ψ̇

Ψ̈ =
µm

Iz(lr + lf )
(lfCS,f (glr − alonghcg)δ

+ (lrCS,r(glf + alonghcg)− lfCS,f (glr − alonghcg))β

− (l2fCS,f (glr − alonghcg) + l2rCS,r(glf + alonghcg))
Ψ̇

v
)

v̇ = along

ṡx = v cos(β +Ψ)

ṡy = v sin(β +Ψ)

Fig. 5: Single-Track Model

After conducting research on the Internet and exploring the

CARLA simulator, as well as formulating certain hypotheses,

we have determined the following parameters.

Vehicle Parameter Symbol Unit Tesla Model 3

Vehicle Length l [m] 4.719
Vehicle Width w [m] 2.09

Total Vehicle Mass m 103[kg] 1.845

Moment of Inertia Iz 103[kgm2] 1.5
Distance to Front Axle lf [m] 1.5
Distance to Rear Axle lr [m] 1.5
Center of Gravity Height hcg [m] 0.45
Stiffness Coefficient (Front) CS,f [1/rad] 20.89
Stiffness Coefficient (Rear) CS,r [1/rad] 20.89
Friction Coefficient µ [-] 1.048

TABLE II: Vehicle parameters for ST Model

Predictions using the ST Model were on average better than

with the Bicycle model, especially in sharp turns as seen on

figure 6.

B. Cost Function

Once a satisfying dynamic model has been chosen, a well-

defined cost function is necessary. For a race, the general ob-

jective is to complete the circuit in the shortest time possible

without collisions. This can be difficult to directly optimize.

A possibility would be to track the progress along the circuit

and maximize it. To avoid collisions, it could be added to

an exponential cost on the distance to the circuit boundaries.

In this scenario, the MPC component would have to plan

its own trajectory and speed to optimize these objectives. In

theory, it would be doable but would require a very long

time horizon in order for MPC to foresee turns and adapt

the speed accordingly. In practice, such a long time horizon

would make the computations intractable in real-time. An

easier possibility is to perform the path planning offline, and

then have the MPC component follow the planned trajectory.

We discuss the offline trajectory optimization in IV. For such

a case, we derived the following cost function:

Cost Function =

N−1
∑

i=0

(

wcte · cte2i + wepsi · epsi2i + wv ·∆v2i

+ wactuations · (δ
2

i + th2

i )

+ wrate ·

(

(

δi − δi−1

∆t

)2

+

(

thi − thi−1

∆t

)2
))

Where:

• ctei is the cross-track error at time step i.

• epsii is the orientation error at time step i.

• ∆vi is the speed error at time step i.

• δi and thi are the steering angle and throttle inputs at

time step i.

• δi−1 and thi−1 are the previous steering angle and

throttle inputs.

• ∆t is the time step.

• wcte, wepsi, wv, wactuations, and wrate are the weights for

each term.



In this cost function, there are three main terms and four

secondary terms. The cross-track error term corresponds

to the distance between the current vehicle position and

the closest point of the reference trajectory. It ensures that

the vehicle will not deviate too much from the reference

trajectory, hence avoiding collisions. Being on a valid

position is not sufficient to follow correctly the trajectory,

a correct orientation is also necessary, which is ensured by

the orientation error term. Finally, the speed error forces the

vehicle to follow the trajectory at a reference speed in order

to finish the circuit in the shortest time possible.

Normalization terms are added on the actuations as, for the

same result, lower use of the actuators will be preferred.

Finally, normalization terms are also added on the actua-

tions rate to keep the control commands smooth and avoid

oscillations.

C. Results

We were able to implement the MPC described in this

section and successfully test it on the Monza track. The

bicycle model from section II-A.2 was sufficient to control

the vehicle to follow the track at a speed up to 90 KPH.

However, higher speed would result in too much slipping

and a crash. The ST Model allowed us to take the slip

angle into account and make better predictions. On offline

data, we saw that the prediction from the ST Model would

outperform the bicycle model by a large amount in specific

cases as shown in figure 6. In the presented example, a

turn at high speed is incorrectly predicted by the Bicycle

Model due to the vehicle’s slipping. However, the ST model

also appeared to be more complex and less stable when

used with standard Euler integration [6], sometimes resulting

in exploding gradients. Using a more stable solver such

as LSODE [7] via the Scipy library [8] avoids this issue.

However, the computational cost of a MPC step is then

very large and takes up to three seconds on our hardware.

As a simulation step is 0.05s, this is both unrealistic and

impractical for tuning. For these reasons, we decided to

change our approach.

Fig. 6: Comparison of dynamic predictions

III. MODEL-FREE CONTROL

In theory, Model Predictive Control seemed ideally suited

to our scenario as a simulation environment can offer a

fully predictable system. However, the lack of CARLA

documentation on its dynamics nullified this advantage.

Additionally, the MPC high computational complexity, made

it arduous to optimize for real-time situations. Consequently,

we pivoted towards model-free methods, which often exhibit

superior computational efficiency, as they do not require

the iterative optimization process characteristic of MPC,

making them suitable for real-time control applications

where dynamics are unknown or uncertain.

A. PURE PURSUIT LATERAL CONTROLLER

Instead of the MPC, we then tried to implement a pure

pursuit controller which is a path tracking algorithm to

follow a desired path [9]. The pure pursuit controller is

an automatic steering method that computes the angular

velocity command that moves the vehicle from its current

position to reach some look-ahead point in front of the

vehicle. The algorithm moves the look-ahead point on the

path based on the current position of the vehicle until the

last point of the path. We can think of this as the vehicle

constantly chasing a point in front of it.

The controller continuously measures the current position

and heading of the vehicle as an input. Because the desired

path that the vehicle should follow is known, the algorithm

then draws a circle around the current position. The inter-

section between the circle and the desired path determines

the target point. The Look Ahead Distance, which represents

the radius of this circle, is the main tuning property for

the controller. It corresponds to how far along the path the

vehicle should look from the current location to compute the

angular velocity commands. The faster the vehicle goes, the

greater the look ahead distance must be.

Fig. 7: Pure Pursuit controller operating principle [9]



When looking for the target point, there are 3 possibilities:

no intersection between the circle and the desired path, one

intersection between the circle and the desired path, or two

intersections between the circle and the desired path.

Fig. 8: Line-Circle Intersection [9]

In geometry, a line meeting a circle in exactly one point is

known as a tangent line, while a line meeting a circle in

exactly two points is known as a secant line.

Defining:

dx = x− 2− x1

dy = y2 − y1

dr =
√

d2x + d2y

D = det

(

x1 x2

y1 y2

)

= x1y2 − x2y1

gives the points of intersection as

x =
Ddy ± sgn∗(dy)dx

√

r2d2r −D2

d2r

y =
−Ddx ± |dy|

√

r2d2r −D2

d2r

where the function sgn∗(x) is defined as

sgn∗(x) =

{

−1 if x < 0

1 otherwise

The discriminant ∆ = r2d2r − D2 therefore determines the

incidence of the line and the circle, as summarized in the

following table.

∆ Incidence

∆ < 0 No intersection
∆ = 0 Tangent
∆ > 0 Intersection

TABLE III: Classification based on ∆ value

In order to prevent the vehicle from going backward in

the path, we can create a variable lastFoundIndex to store

the index of the point it just passed. Every time the loop

runs, it will only check the points that are located after

path[lastFoundIndex]. This way, the segments the vehicle

has already traveled through will not be checked again for

intersections. In the cases that no new intersection has been

found (vehicle deviates from the path), the vehicle will follow

the point at lastFoundIndex.

Now that our goal point is determined, the next step is

to make the vehicle move toward that point. Therefore, the

controller has to calculate the steering angle required to guide

the vehicle toward the selected target point. The turn error,

in blue on figure 9, is the difference between the current

heading and the target direction, normalized to be between

[−π, π]. We then apply a gain K of the form
Kp√
v

, with v the

linear velocity, so that the faster we go, the more we reduce

the gain K and therefore the steering angle to avoid deviating

too quickly. The Pure Pursuit Controller finally returns the

desired steering angle: K ∗ TurnError.

Fig. 9: Illustration of the turn error [9]

The pure pursuit controller operates as a feedback loop, it

constantly senses the vehicle’s position, compares it to the

desired path, and makes steering adjustments to minimize the

error between the actual and desired trajectories. In figure 10,

the dotted gray line is the pre-computed path that the vehicle

needs to follow and the solid orange line is the vehicle’s

trajectory. As we can see, the pure pursuit controller performs

decently well.

Fig. 10: Illustration of the vehicle’s path tracking



B. PID LONGITUDINAL CONTROLLER

The pure pursuit controller allows us to control the

steering angle of the car, but we still need to control the

throttle. For this, we use a Proportional-Integral-Derivative

(PID) feedback control loop mechanism to match a reference

speed.

A PID adjusts the output based on the difference between

a desired setpoint and the measured process variable. The

proportional term responds to the current error, the integral

term integrates past errors, and the derivative term predicts

future errors based on the current rate of change. The integral

term helps to eliminate steady-state errors by continuously

summing past errors over time, effectively reducing any

remaining offset between the desired setpoint and the actual

speed. This allows the car to maintain consistent velocity

even in the presence of external disturbances or variations in

the environment (e.g. wind). The derivative term especially

helps to avoid overshooting which is especially useful in

racing to prevent collisions.

IV. RACE TRAJECTORY OPTIMIZATION

Separating the trajectory planning from the control can

help reduce the online computation burden. In general, it

also provides a more globally optimized solution. As the

race track is known, we can compute an optimized trajectory

offline. We use the time-optimal trajectory planning by

Christ et al. [10]. In this method, the minimum lap time

problem is described as an optimal control problem,

converted to a nonlinear program using direct orthogonal

Gauss-Legendre collocation and then solved by the interior-

point method IPOPT [11].

Solving the nonlinear program leads to an optimized trajec-

tory. Our MPC-based solution uses directly this optimized

trajectory. Our Model-Free solution only uses the speed

profile and follows the center line of the race track as a Pure

Pursuit controller cuts corners. The optimized speed profile is

presented in figure 11. In long straights, the vehicle quickly

accelerates to its maximum speed (about 270 KPH). Before

sharp turns, the vehicle decelerates to avoid a potential crash.

Fig. 11: Optimized speed profile for the race trajectory. Green

indicates acceleration while red represents deceleration.

V. RESULTS AND CONCLUSIONS

Our final model combines a lateral Pure Pursuit Controller,

a longitudinal PID controller, and a globally optimized speed

profile. It outperforms all previous submissions to the ROAR

Simulation Racing Series as presented in table IV. Note that

this is the case as of May 6, 2024.

TABLE IV: Contest Results

Rank Solution Total Sim time
Elapsed (s)

1 Ours 342.1
2 Mark Menaker 356.9
3 Yuehang Yang, Audrey Han, et al. 385.2
4 Ryan Chow 386.15
5 Derek Chen 418
6 Eric Li, Wayne Li, et al. 462.55
7 Krishay Garg 519.2
8 Avinash Karthik, Sourodeep Deb 1658.9

Future work might improve this result by continuing

research on MPC. Especially, an implementation in C++ or

using an automatic differentiation package such as CasADi

[12] could vastly increase the MPC step speed, making it

viable for the competition.

Reinforcement Learning is also an interesting future explo-

ration. However, a team from the ROAR lab has already

dedicated its research to this avenue [13] but has not yet

reached a level close to traditional control methods in this

competition.
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